Stochastic nonlinear Schrödinger equations: No blow-up in the non-conservative case
نویسندگان
چکیده
منابع مشابه
Blow-up in Nonlinear Heat Equations
In this paper we study the blowup problem of nonlinear heat equations. Our result show that for a certain family of initial conditions the solution will blowup in finite time, the blowup parameters satisfy some dynamics which are asymptotic stable, moreover we provide the remainder estimates. Compare to the previous works our approach is analogous to one used in bifurcation theory and our techn...
متن کاملThe Problem of Blow-up in Nonlinear Parabolic Equations
The course aims at presenting an introduction to the subject of singularity formation in nonlinear evolution problems usually known as blowup. In short, we are interested in the situation where, starting from a smooth initial configuration, and after a first period of classical evolution, the solution (or in some cases its derivatives) becomes infinite in finite time due to the cumulative effec...
متن کاملFinite-time Blow-up in the Additive Supercritical Stochastic Nonlinear Schrödinger Equation : the Real Noise Case
We review some results concerning the apparition of finite time singularities in nonlinear Schrödinger equations with a Gaussian additive noise which is white in time and correlated in space. We then extend the results to the case where the noise is real valued, which is the case in some physical situations.
متن کاملChanging blow-up time in nonlinear Schrödinger equations
Abstract Solutions to nonlinear Schrödinger equations may blow up in finite time. We study the influence of the introduction of a potential on this phenomenon. For a linear potential (Stark effect), the blow-up time remains unchanged, but the location of the collapse is altered. The main part of our study concerns isotropic quadratic potentials. We show that the usual (confining) harmonic poten...
متن کاملBlow-up Results for Nonlinear Parabolic Equations on Manifolds
1. Introduction. The aim of this paper is threefold. First, by a unified approach, we prove that several classical blow-up results obtained over the last three decades for semilinear and quasilinear parabolic problems in R n are valid on noncompact, complete Riemannian manifolds, which include those with nonnegative Ricci curvatures. Next, we remove some unnecessary a priori growth conditions o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2017
ISSN: 0022-0396
DOI: 10.1016/j.jde.2017.08.030